Efecto de las fibras dietéticas fructano de agave, maltodextrina resistente y celulosa en dietas a base de gluten sobre la digestibilidad y la utilización de nitrógeno in vivo

Contenido principal del artículo

Karen Samantha Cruz-Amaya
Diego Hernández-Martínez
Rafael Canett-Romero
Yaeel Isbeth Cornejo-Ramírez

Resumen

La ingesta de fibra dietética mejora el proceso de digestión y disminuye niveles de glucosa y colesterol. Sin embargo, podría disminuir la digestibilidad proteica. La celulosa es una fibra insoluble de la pared celular de las plantas. La maltodextrina resistente es una fibra soluble precedente al almidón resistente. Agavin es una fibra soluble obtenida de tallos y mezontle del agave. Considerando que el consumo de dietas con proteínas de baja calidad aumenta año con año, está investigación tiene como objetivo evaluar el consumo de 5 % de celulosa, Agavin y maltodextrina resistente en la digestibilidad proteica y utilización de nitrógeno para el crecimiento en dietas con 10 % de gluten y caseína mediante ensayo in vivo utilizando ratas Sprague Dawley. El consumo de alimento, peso ganado, y excreción fecal fueron medidos cada tercer día durante 14 días. El valor nutricional y la mejor aceptación de la caseína desencadenaron un mayor aumento en peso de las ratas. La ausencia de proteína causo el menor consumo de alimento y pérdida en peso de las ratas. Las dietas a base de gluten provocaron una ingesta intermedia de alimento y un bajo incremento en peso de las ratas. Cero o 5 % de fibra dietética no causó un efecto relevante en el peso de las ratas. Así, el consumo de 5 % de fibra dietética puede ayudar a mejorar los hábitos nutricionales sin afectar el nitrógeno ingerido para el crecimiento. Finalmente, el Agavin como fibra dietética representa una opción adecuada para la industria del agave. 

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Cruz-Amaya, K. S., Hernández-Martínez, D., Canett-Romero, R., & Cornejo-Ramírez, Y. I. . (2022). Efecto de las fibras dietéticas fructano de agave, maltodextrina resistente y celulosa en dietas a base de gluten sobre la digestibilidad y la utilización de nitrógeno in vivo. Ciencias Agronómicas, (40), e027. https://doi.org/10.35305/agro40.e027
Sección
Artículos originales

Citas

ABELLÁN RUIZ, M.S.; BARNUEVO ESPINOSA, M.D.; CONTRERAS FERNÁNDEZ, C.J.; LUQUE RUBIA, A.J.; SÁNCHEZ AYLLÓN, F.; ALDEGUER GARCÍA, M.; GARCÍA SANTAMARÍA, C. and LÓPEZ ROMÁN, F.J. (2016) Digestion-resistant maltodextrin effects on colonic transit time and stool weight: a randomized controlled clinical study. European Journal of Nutrition, 55 (8), 2389–2397.

ADAMS, S.; SELLO, C.T.; QIN, G.X.; CHE, D. and HAN, R. (2018) Does dietary fiber affect the levels of nutritional components after feed formulation? Fibers, 6 (2).

ALFARO, V. (2005) Specification of laboratory animal use in scientific articles: Current low detail in the journals’ instructions for authors and some proposals. Methods and Findings in Experimental and Clinical Pharmacology, 27 (7), 495-504.

ALFAWAZ, H.; NAEEF, A.F.; WANI, K.; KHATTAK, M.N.K.; SABICO, S.; ALNAAMI, A.M. and AL-DAGHRI, N.M. (2019) Improvements in glycemic, micronutrient, and mineral indices in arab adults with pre-diabetes post-lifestyle modification program. Nutrients, 11 (11), 2775.

ALLSOPP, P.; POSSEMIERS, S.; CAMPBELL, D.; OYARZÁBAL, I.S.; GILL, C. and ROWLAND, I. (2013) An exploratory study into the putative prebiotic activity of fructans isolated from Agave angustifolia and the associated anticancer activity. Anaerobe, 22, 38–44.

AOAC (2000) Official Methods of Analysis. 17th Edition, The Association of Official Analytical Chemists, Gaithersburg, MD, USA.

DE ALUJA, A.S. (2002) Animales de laboratorio y la Norma Oficial Mexicana (NOM-062-ZOO-1999). Gaceta Médica de México, 138 (3), 295-8.

ANDERSON, J.W.; BAIRD, P.; DAVIS, R.H.; FERRERI, S.; KNUDTSON, M.; KORAYM, A.; WATERS, V. and WILLIAMS, C.L. (2009) Health benefits of dietary fiber. Nutrition Reviews, 7: 188–205.

BENDER, A.E. and DOELL, B.H. (1957) Biological evaluation of proteins: a new aspect. British Journal of Nutrition, 11 (2), 140–148.

DAHL, W.J. and STEWART, M.L. (2015) Position of the Academy of Nutrition and Dietetics: Health Implications of Dietary Fiber. Journal of the Academy of Nutrition and Dietetics, 115 (11), 1861–1870.

DARRAGH, A.J. and HODGKINSON, S.M. (2000) Quantifying the Digestibility of Dietary Protein [online]. The Journal of Nutrition, 130 (7), 1850S-1856S. Available from: https://academic.oup.com/jn/article-abstract/130/7/1850S/4686199

FALCÓN-VILLA, M.R.; BARRÓN-HOYOS, J.M. and CINCO-MOROYOQUI, F.J. (2014) Commercial Breakfast Cereals Available in Mexican Markets and their Contribution in Dietary Fiber, β-Glucans and Protein Quality by Rat Bioassays. Plant Foods for Human Nutrition, 69 (3), 222–227.

FEDDERN, V.; BADIALE-FURLONG, E. and DE SOUZA-SOARES, L.A. (2008) Biological response to different diets of fermented and unfermented mixtures of flour and cereal brans. International Journal of Food Science and Technology, 43 (11), 1945–1952.

FAO/WHO (1991) FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS., WORLD HEALTH ORGANIZATION., and JOINT FAO/WHO EXPERT CONSULTATION ON PROTEIN QUALITY EVALUATION. Protein quality evaluation: report of the Joint FAO/WHO Expert Consultation, Bethesda, Md., USA 4-8 December 1989. Food and Agriculture Organization of the United Nations. Paper 51. Available from: https://www.academia.edu/40342518/Protein_quality_evaluation_Report_of_Joint_FAO_WHO_Expert_Consultation_51_FOOD_AND_AGRICUL_TURE_ORGANIZATION_OF_THE_UNITED_NATIONS

FRANCO-ROBLES, E. and LÓPEZ, M.G. (2016) Agavins increase neurotrophic factors and decrease oxidative stress in the brains of high-fat diet-induced obese mice. Molecules, 21 (8), 998.

GARCÍA MONTALVO, I.A.; MÉNDEZ DÍAZ, S.Y.; AGUIRRE GUZMÁN, N.; SÁNCHEZ MEDINA, M.A.; MATÍAS PÉREZ, D. and PÉREZ CAMPOS, E. (2018) Increasing consumption of dietary fiber complementary to the treatment of metabolic syndrome. Nutricion Hospitalaria, 35 (3), 582–587.

GARCÍA-CURBELO, Y.; AYALA, L.; BOCOURT, R.; ALBELO, N.; NUÑEZ, O.; RODRÍGUEZ, Y. and LÓPEZ, M.G. (2018) Agavins as prebiotic. Their influence on lipid metabolism of pigs Agavinas como prebióticos: su influencia en el metabolismo lipídico de cerdos. Cuban Journal of Agricultural Science, 52 (4), 395-400.

GOODMAN, B.E. (2010) Staying Current Insights into digestion and absorption of major nutrients in humans Goodman BE. Insights into digestion and absorption of major nutrients in humans. Advances in Physiology Education [online]. 34, 44–53. Available from: www.physiology.org/journal/advances

HENCHION, M.; HAYES, M.; MULLEN, A.M.; FENELON, M. and TIWARI, B. (2017) Future protein supply and demand: Strategies and factors influencing a sustainable equilibrium. Foods, 6 (7), 1–21.

JIN, J.; MA, H.; ZHOU, C.; LUO, M.; LIU, W.; QU, W.; HE, R.; LUO, L. and YAGOUB, A.E.G.A. (2015) Effect of degree of hydrolysis on the bioavailability of corn gluten meal hydrolysates. Journal of the Science of Food and Agriculture, 95 (12), 2501–2509.

JØRGENSEN, H.; ZHAO, X.Q.; THEIL, P.K.; GABERT, V.M. and BACH KNUDSEN, K.E. (2003) Energy metabolism and protein balance in growing rats fed different levels of dietary fibre and protein. Archives of Animal Nutrition, 57 (2), 83–98.

LALEG, K.; SALLES, J.; BERRY, A.; GIRAUDET, C.; PATRAC, V.; GUILLET, C.; DENIS, P.; TESSIER, F.J.; GUILBAUD, A.; HOWSAM, M.; BOIRIE, Y.; MICARD, V. and WALRAND, S. (2019) Nutritional evaluation of mixed wheat-faba bean pasta in growing rats: Impact of protein source and drying temperature on protein digestibility and retention. British Journal of Nutrition, 121 (5), 496–507.

LATTIMER, J.M. and HAUB, M.D. (2010) Effects of dietary fiber and its components on metabolic health. Nutrients, 2, 1266–1289.

LERNER, A.; SHOENFELD, Y. and MATTHIAS, T. (2017) Adverse effects of gluten ingestion and advantages of gluten withdrawal in nonceliac autoimmune disease. Nutrition Reviews, 75 (12), 1046–1058.

LOPEZ, M.G.; MANCILLA-MARGALLI, N.A. and MENDOZA-DIAZ, G. (2003) Molecular Structures of Fructans from Agave tequilana Weber var. azul. Journal of Agricultural and Food Chemistry, 51 (27), 7835–7840.

MONTAÑEZ-SOTO, J.; VENEGAS-GONZÁLEZ, J.; VIVAR-VERA, M. and RAMOS-RAMÍREZ, E. (2011) Extracción, caracterización y cuantificación de los fructanos contenidos en la cabeza y en las hojas del Agave tequilana Weber AZUL. Bioagro, 23 (3), 199-206.

OPAZO-NAVARRETE, M.; TAGLE FREIRE, D.; BOOM, R.M. and JANSSEN, A.E.M. (2019) The Influence of Starch and Fibre on in Vitro Protein Digestibility of Dry Fractionated Quinoa Seed (Riobamba Variety). Food Biophysics, 14 (1), 49–59.

PIRMAN, T.; MIRAND, P.P.; SALOBIR, J.; PATUREAU MIRAND, P. and OREŠNIK, A. (2009) Effects of dietary pectin on protein digestion and metabolism in growing rats [online]. Acta Agriculturae Slovenica, 94 (2), 111-119. Available from: https://www.researchgate.net/publication/228351793.

RANINEN, K.; LAPPI, J.; MYKKÄNEN, H. and POUTANEN, K. (2011) Dietary fiber type reflects physiological functionality: Comparison of grain fiber, inulin, and polydextrose. Nutrition Reviews, 69 (1), 9–21.

RUCKER, R.B. and WATKINS, B.A. (2019) Inadequate diet descriptions: a conundrum for animal model research. Nutrition Research, 65: 1-3.

SANTIAGO-GARCÍA, P.A.; MELLADO-MOJICA, E.; LEÓN-MARTÍNEZ, F.M.; DZUL-CAUICH, J.G.; LÓPEZ, M.G. and GARCÍA-VIEYRA, M.I. (2021) Fructans (agavins) from Agave angustifolia and Agave potatorum as fat replacement in yogurt: Effects on physicochemical, rheological, and sensory properties. LWT- Food Science and Technology, 140, 110846.

DA SILVA, B.P.; DIAS, D.M.; DE CASTRO MOREIRA, M.E.; TOLEDO, R.C.L.; DA MATTA, S.L.P.; DELLA LUCIA, C.M.; MARTINO, H.S.D. and PINHEIRO-SANT’ANA, H.M. (2016) Chia Seed Shows Good Protein Quality, Hypoglycemic Effect and Improves the Lipid Profile and Liver and Intestinal Morphology of Wistar Rats. Plant Foods for Human Nutrition, 71 (3), 225–230.

SLAVIN, J.L., 2005. Dietary fiber and body weight. Nutrition, 21 (3), 411-418.

TAPSELL, L.C.; NEALE, E.P.; SATIJA, A. and HU, F.B. (2016) Foods, nutrients, and dietary patterns: Interconnections and implications for dietary guidelines. Advances in Nutrition, 7(3): 445–54.

THOMPSON, T.L.; SINGLETON, C.R.; SPRINGFIELD, S.E.; THORPE Jr, R.J. and ODOMS-YOUNG, A. (2020) Differences in nutrient intake and diet quality between non-Hispanic black and non-Hispanic white men in the United States. Public health reports, 135 (3), 334-342.

VERMA, A.K. and BANERJEE, R. (2010) Dietary fibre as functional ingredient in meat products: A novel approach for healthy living - A review. Journal of Food Science and Technology, 47 (3), 247-257.

WONG, K.H. and CHEUNG, P.C.K. (2003) Effect of fiber-rich brown seaweeds on protein bioavailability of casein in growing rats. International Journal of Food Sciences and Nutrition, 54 (4), 269–279.

ZHANG, W.; LI, D.; LIU, L.; ZANG, J.; DUAN, Q.; YANG, W. and ZHANG, L. (2013) The effects of dietary fiber level on nutrient digestibility in growing pigs [online]. Journal of Animal Science and Biotechnology, 4(1), 1-7. Available from: http://www.jasbsci.com/content/4/1/17

ZIMMERMANN, A.; VISSCHER, C. and KALTSCHMITT, M. (2021) Plant-based fructans for increased animal welfare: provision processes and remaining challenges. Biomass Conversion and Biorefinery, 1-19.

Artículos similares

1 2 > >> 

También puede {advancedSearchLink} para este artículo.