Crop spraying. Distribution and product losses with different nozzles

Main Article Content

Victor Hugo Merani
Facundo Daniel Guilino
Juan Manuel Vazquez
Luciano Larrieu
Daniel Adalberto Ferro
Pedro Platz
Santiago Néstor Tourn
Esteban Ivan Pereira
Matilde Mur

Abstract

Spraying is an important tool in agricultural production. The selection of nozzles to reduce the amount of product without affecting distribution is a challenge. The objective of this work was to evaluate the performance of different nozzles on vertical and horizontal targets. Three nozzles were contrasted: Defy 3D, XR11002VP, and TXA8002VK on two prisms of different dimensions. Water-sensitive cards and the CIR1.5® program were used to evaluate impact density, Volumetric Median Diameter and Efficiency, on horizontal and vertical faces of a target in a closed and asphalted shed. The highest values for all parameters were obtained on horizontal faces. Efficiencies were between 50 and 80% on horizontal faces, and between 2% and 25% on vertical faces. Horizontal impacts ranged from 150 to 240 imp.cm-2 (depending on the nozzles), and vertical impacts from 25 to 50 imp.cm-2. Although results were limited to conditions of zero wind and very homogeneous soils, they contribute to decision-making by providing data from more real working conditions than those obtained in laboratory measurements. Defy 3D is a new nozzle without field performance testing. It can be concluded that the angles of nozzles do not improve the quality of application in vertical positions, under the test conditions. Vertical targets did not get the minimum number of impacts recommended for fungicides or contact insecticides. Also, product losses occurred despite the environmental conditions of the trial.

Article Details

How to Cite
Merani, V. H., Guilino, F. D., Vazquez, J. M., Larrieu, L., Ferro, D. A., Platz, P., … Mur, M. (2023). Crop spraying. Distribution and product losses with different nozzles. Ciencias Agronómicas, (41), e030. https://doi.org/10.35305/agro41.e030
Section
Artículos originales

References

ASABE (2009) Droplet Size Classification S572.1. Norma. 2. http://info.sprayerdepot.com/hs-fs/hub/95784/file-32015844-pdf/docs/asabe_s572.1_droplet_size_classification.pdf

BAUER, F. C., & RAETANO, E. (2004). Distribuição volumétrica de calda produzidas pelas pontas pulverização xr, tp e tj sob diferentes condições operacionais Volumetric Distribution of the Spray Nozzle Tips XR, TP and TJ under Different Operational Conditions. 22(2), 275–284. https://doi.org/10.1590/S0100-83582004000200015.

BOLLER, FERREIRA, & COSTA. (2011). Condições do ar e angulação das folhas influenciam a qualidade das pulverizações na cultura da soja. Revista Plantio Direto, 121, 33–37. https://www.plantiodireto.com.br/edicoes/index?page=6

BOUSE, L. F., KIRK, I. W., & BODE, L. E. (1990). Effect of spray mixture on droplet size. Transactions of the American Society of Agricultural Engineers, 33(3), 783–788. doi: 10.13031/2013.31401.

CÁCERES, D. M. (2015). Tecnología agropecuaria y agronegocios. La lógica subyacente del modelo tecnológico dominante. Mundo agrario, 16(31). http://www.mundoagrario.unlp.edu.ar/article/view/MAv16n31a08

COMBELLACK, J. H., WESTERNT, N. M., & RICHARDSON, R. G. (1996). A comparison of the drift potential of a novel twin fluid nozzle with conventional low volume flat fan nozzles when using a range of adjuvants. Crop Protection, 15(2), 147–152. https://doi.org/10.1016/0261-2194(95)00089-5

DI RIENZO, J. A., CASANOVES, F., BALZARINI, M. G., GONZALEZ, L., TABLADA, M., & ROBLEDO, C. W. (2008). InfoStat (No. 2008). Grupo InfoStat. FCA, Universidad Nacional de Cordoba. https://www.infostat.com.ar/.

DOWNER, R. A., EBERT, T. A., THOMPSON, R. S., & HALL, F. R. (1997). Herbicide spray distribution, quality and interactions: conflicts in requirements. Aspects of Applied Biology, 48, 79–89. https://www.researchgate.net/profile/Timothy_Ebert/publication/265058910_Herbicide_spray_distribution_quality_and_efficacy_interactions_Conflicts_in_requirements/links/53fe1bb50cf23bb019bde61a/Herbicide-spray-distribution-quality-and-efficacy-interactions-Conflicts-in-requirements.pdf

FERGUSON, J. C., CHECHETTO, R. G., HEWITT, A. J., CHAUHAN, B. S., ADKINS, S. W., KRUGER, G. R., & O’DONNELL, C. C. (2016). Assessing the deposition and canopy penetration of nozzles with different spray qualities in an oat (Avena sativa L.) canopy. Crop Protection. https://doi.org/10.1016/j.cropro.2015.11.013

FERGUSON, J. C., O’DONNELL, C. C., CHAUHAN, B. S., ADKINS, S. W., KRUGER, G. R., WANG, R., URACH FERREIRA, P. H., & HEWITT, A. J. (2015). Determining the uniformity and consistency of droplet size across spray drift reducing nozzles in a wind tunnel. Crop Protection, 76, 1–6. https://doi.org/10.1016/j.cropro.2015.06.008

FRANÇA DURÃO, C., & BOLLER, W. (2017). Spray nozzles performance in fungicides applications for asian soybean rust control. Journal of the Brazilian Association of Agricultural Engineering Agríc. Jaboticabal, 37(4), 709–716. https://doi.org/10.1590/1809-4430-Eng.Agric.v37n4p709-716/2017

FRIESEN, G. H., & WALL, D. A. (1991). Effect of Application Factors on Efficacy of Fluazifop-P-Butyl in Flax. Weed Technology, 5(3), 504–508. https://doi.org/10.1017/s0890037x00027238

HANNA, H. M., ROBERTSON, A. E., CARLTON, W. M., & WOLF, R. E. (2009). Nozzle and carrier application effects on control of soybean leaf spot diseases. Applied Engineering in Agriculture. 25(2006), 5–14. doi: https://doi.org/10.13031/2013.25424

HOBSON, P. A., MILLER, P. C. H., WALKLATE, P. J., TUCK, C. R., & WESTERN, N. M. (1993). Spray drift from hydraulic spray nozzles: The use of a computer simulation model to examine factors influencing drift. In Journal of Agricultural Engineering Research, 54(4), 293–305. https://doi.org/10.1006/jaer.1993.1022

HYPRO. (2016). Hypro 3D nozzles. Pentair Folleto.4. https://www.pentair.com/en-us/products/business-industry/agricultural-products/spray-nozzles/3d.html.

JENSEN, K. P. (2007). Nonvertical Spray Angles Optimize Graminicide Efficacy. Source: Weed Technology, 21(4), 1029–1034. https://doi.org/10.1614/WT-07-044.1

JENSEN, P. K. (2012). Increasing efficacy of graminicides with a forward angled spray. Crop protection, 32, 17-23. https://doi.org/10.1016/j.cropro.2011.10.017.

LEIVA, P. D. (1995). Manejo de la deriva en la aplicacion de agroquimicos. Generalidades. INTA 14(139), 6. https://www.agroconsultasonline.com.ar/ticket.html/Microsoft%20Word%20-%20Deriva%20en%20Aplicacion%20de%20Agroquimicos.pdf?op=d&ticket_id=267&evento_id=542.

MASIÁ, R. C. (2010). Tecnología de aplicación de agroquímicos (V. J. Magdalena J.C., Castillo Herran B., Di Prinzio A., Homer Bannister I (ed.); p. 200). https://inta.gob.ar/documentos/tecnologia-de-aplicacion-de-agroquimicos.

MATTHEWS, G. A., BATEMAN, R., & MILLER, P. (2014). Pesticide Application Methods. Fourth Edition. John Wiley & Sons, Ltd. USA. 545. https://books.google.com.ar/books?hl=es&lr=&id=ORbsdJpoN5EC&oi=fnd&pg=PP2&dq=Pesticide+Application+Methods.&ots=hkbyFZuVEL&sig=EcPd9Jw-jUUCRM3IDLBJriM9_sE#v=onepage&q=Pesticide%20Application%20Methods.&f=false.

MERANI, V. H., MUR, M., RAMIREZ, F., PONCE, M. J., GUILINO, F., & PALANCAR, T. C. (2019). Efecto de variables operativas sobre la calidad de aplicación y la deriva en la pulverización de agroquímicos. AgriScientia, 36(2), 45–55. https://doi.org/10.31047/1668.298x.v36.n2.19093.

MUR, M., GADEA, S., PONCE, M. J., MARANI, V. H., GUILINO, F. D., BALBUENA, R. H., VAZQUEZ, J. M., & PALANCAR, T. C. (2019). Prestación de boquillas en el control de enfermedades de trigo. Revista Tecnología En Marcha, 1–43. https://doi.org/10.18845/tm.v32i7.4240

MUR, M., PONCE, M., VÁZQUEZ, J., GUILINO, F., MERANI, V., PALANCAR, T., & BALBUENA, R. (2018). Aplicación de agroquímicos en cultivos de soja (Glycine max L Merr). Evaluación del efecto de diferentes técnicas sobre la eficiencia de distribución. Revista de La Facultad de Agronomía, La Plata, 117(1), 77–88. https://revistas.unlp.edu.ar/revagro/article/view/7320.

PANNETON, B. (2012). Image analysis of water-sensitive cards for spray coverage experiments. Journal of Agricultural Safety and Health, 18(2), 179–182. https://doi.org/10.13031/2013.7783

PRIMARY INDUSTRIES STANDING COMMITTEE. (2002). Spray Drift Management Principles , Strategies and Supporting Information. In PISC (SCARM) Report 82 (CSIRO PUBL, Vol. 82). https://www.publish.csiro.au/book/3452/.

SHAW, D. R., MORRIS, W. H., WEBSTER, E. P., & SMITH, D. B. (2000). Effects of Spray Volume and Droplet Size on Herbicide Deposition and Common Cocklebur ( Xanthium strumarium ) Control 1. 14(2), 321–326. https://doi.org/10.1614/0890-037X(2000)014[0321:EOSVAD]2.0.CO;2

SYNGENTA. (2012). Water-sensitive paper for monitoring spray distribution (pp. 1–15). https://www.agroconsultasonline.com.ar//ticket.html/Water%20Sensitive%20Paper%20Syngenta%20Agro.pdf?op=d&ticket_id=2388&evento_id=4891

TEEJET. (2004). Boquillas de Pulverización. Catalogo Publicitario, 54. https://www.teejet.com/CMSImages/TEEJET_ES/documents/catalogs/cat51a-es.pdf

TOMAZELA, M. S., MARTINS, D., MARCHI, S. R., & NEGRISOLI, E. (2006). Avaliação da deposição da calda de pulverização em função da densidade populacional de Brachiaria plantaginea, do volume e do ângulo de aplicação: effects of density, volume and spraying angle. Planta Daninha, 24(1), 183-189. https://doi.org/10.1590/S0100-83582006000100023.

TU, Y. Q., LIN, Z. M., & ZHANG, J. Y. (1986). The effect of leaf shape on the deposition of spray droplets in rice. Crop Protection, 5(1), 3–7. https://doi.org/10.1016/0261-2194(86)90031-1

UK, S., & COURSHEE, R. J. (1982). Distribution and likely effectiveness of spray deposits within a cotton canopy from fine ultralow‐volume spray applied by aircraft. Pesticide Science, 13(5), 529–536. https://doi.org/10.1002/ps.2780130511

WEBER R. (1982). La quatrième session du panel FAO sur la mécanisation agricole : matériels et méthodes pour l’application de pesticides pour la préparation des sols et la protection des cultures. Machinisme Agricole Tropical, 77, 56–63. https://doi.org/10.1016/S0197-0186(13)00110-1

WIRTH, W., STORP, S., & JACOBSEN, W. (1991). Mechanisms controlling leaf retention of agricultural spray solutions. Pesticide Science, 33(4), 411–420. https://doi.org/10.1002/ps.2780330403

WOLF, HARRISON, S., HALL, F., & COOPER, J. (2000). Optimizing postemergence herbicide deposition and efficacy through application variables in no-till systems. Weed Science, 48(6), 761–768. https://doi.org/10.1614/0043-1745(2000)048[0761:OPHDAE]2.0.CO;2

WOLF, R. E., & DAGGUPATI, P. N. (2009). Nozzle type effect on soybean canopy penetration. Applied Engineering in Agriculture, 25(1), 23–30. https://doi.org/10.13031/2013.25426

WOLF, T. M., & PENG, G. (2011). Improving Spray Deposition on Vertical Structures : The Role of Nozzle Angle , Boom Height , Travel Speed , and Spray Quality. Pest Technology, 5, 67–72. http://www.globalsciencebooks.info/Online/GSBOnline/OnlinePT_5_SI1.html

XIE HAISHENG, S., CALDWELL, B. C., HSIAO, A. I., QUICK, W. A., & CHAO JIAN FU. (1995). Spray deposition of fenoxaprop and imazamethabenz on wild oat (Avena fatua) as influenced by environmental factors. Weed Science, 43(2), 179–183. https://doi.org/10.1017/s0043174500081030

Most read articles by the same author(s)

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.