Application of native phosphorus-solubilizing fungi in tomato under different doses of mineral fertilization
Main Article Content
Abstract
The sustainable agricultural model proposes reducing the use of chemical fertilizers and promoting alternatives that preserve soil health, produce nutritious food, and contribute to climate change mitigation. In this context, the use of beneficial microorganisms, such as phosphate-solubilizing fungi, is considered a biological strategy to improve nutrient availability, distinguishing itself from chemical fertilizers by its origin and mode of action. This research aimed to evaluate the effect of inoculation with Penicillium sp. or Aspergillus sp. individually, and in combination with four doses of rock phosphate (100 %, 75 %, 50%, and 25 %) to improve tomato plants under greenhouse conditions. The fungal strains Penicillium sp. A56, Aspergillus sp. Mu42, and Penicillium sp. Mu73 were isolated from agricultural soils in the state of Coahuila. Plants without inoculation or fertilization with phosphate rock were used as controls. Four months after inoculation, the concentrations of P in leaves, root, and substrate were determined. Growth variables were also evaluated, including plant height, root length, stem diameter, fresh and dry weight, number of flowers, and clusters. The results indicated that the best response was obtained with 75% rock phosphate, followed by 50%, and finally 25% and 100%, which showed similar performance. Penicillium sp. Mu73+ 75 % rock phosphate (RP) presented, on average, 3.1 times more available phosphorus concentrations in the substrate, whereas Aspergillus sp. Mu42+ 50 % RP and Aspergillus sp. Mu42+ 75 % RP presented, on average, 6.2 and 8.1 times larger leaves and higher root phosphorus concentrations, respectively, than did the control and the treatments with different doses of rock phosphate. In addition to increasing the concentration of phosphorus, the fungi improved some of the growth variables of the tomato plants. On average, the height, stem diameter, fresh and dry weight, number of flowers, and number of bunches increased by 27 %, 15 %, 62 %, 43 %, 5 %, and 20 % respectively, compared with those of both the control treatment and the plants treated with different doses of rock phosphate. Inoculation with these fungi, which solubilize phosphate from organic sources and act as plant growth promoters should be considered a viable option to reduce production costs associated with chemical fertilization and increase the nutritional status of crops to ensure food for future generations.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Los autores conservan los derechos de autor y garantizan a la revista el derecho de primera publicación del trabajo bajo una licencia Creative Commons (BY-NC-SA) que permite a otros compartir con un reconocimiento de la autoría y de la publicación inicial en esta revista.
Los autores están autorizados a realizar contratos adicionales por separado para la distribución no exclusiva de la versión de la obra publicada en esta revista.
Se permite a los autores difundir sus trabajos electrónicamente.
References
ACURIO VÁSCONEZ, R. D., and ESPAÑA IMBAQUINGO, C.K. (2017) Aislamiento, caracterización y evaluación de Trichoderma spp. como promotor de crecimiento vegetal en pasturas de raygrass (Lolium perenne) y trébol blanco (Trifolium repens). Revista de Ciencias de la Vida, 25(1), 53-61. https://doi.org/10.17163/lgr.n25.2017.05
ADEDAYO, A. Adesina., BABALOLA, O. O. (2023) Fungi that promote plant growth in the rhizosphere boost crop growth. Journal of Fungi, 9(2), 239.
ARIAS MOTA, R. M., ROMERO FERNÁNDEZ, A. D. J., BAÑUELOS TREJO, J., and CRUZ ELIZONDO, Y. D. L. (2019) Inoculación de hongos solubilizadores de fósforo y micorrizas arbusculares en plantas de jitomate. Revista Mexicana de Ciencias Agrícolas, 10(8), 1747-1757.
ARMENTA-BOJÓRQUEZ, A., GARCÍA-GUTIÉRREZ, C., CAMACHO-BÁEZ, J. R., APODACA-SÁNCHEZ, M. A., GERARDO-MONTOYA, L., and NAVA-PÉREZ, E. (2010) Biofertilizantes en el desarrollo agrícola de México. Ra Ximhai, 6(1), 51-56.
BÄNZIGER, M., EDMEADES, G. O., and BOLAÑOS, J. (1997) Relación entre el peso fresco y el peso seco del rastrojo de maíz en diferentes estados fenológicos del cultivo. Agronomía Mesoamericana, 8(1), 20-25. https://doi.org/10.15517/am.v8i1.24719
BAREA, J. M., FERROL, N., AZCÓN-AGUILAR, C., and AZCÓN, R. (2008) Mycorrhizal symbioses. En: White, P.J. y Hammond, J.P. (Eds). The ecophysiology of plant- phosphorus interactions. Springer:Dordrecht, 143-163. https://doi.org/10.1007/978-1-4020-8435-5_7
BARROWS, G., SEXTON, S., and ZILBERMAN, D. (2014) Agricultural biotechnology: the promise and prospects of genetically modified crops. Journal of Economic Perspectives, 28(1), 99-120.
BAWEJA, P., KUMAR, S., and KUMAR, G. (2020) Fertilizers and pesticides: Their impact on soil health and environment. En: Giri, B., Varma, A. (Eds). Soil health. Cham: Springer International Publishing, 265-285. https://doi.org/10.1007/978-3-030-44364-1_15
BEGONIA, M. T., BEGONIA, G. B., MILLER, G., GILLIARD, D. and YOUNG, C. (2004) Phosphatase activity and populations of microorganisms from cadmium-and lead-contaminated soils. Bulletin of Environmental Contamination and Toxicology, 73(6), 1025-1032. https://doi.org/10.1007/s00128-004-0528-4
BONONI, L., CHIARAMONTE, J. B., PANSA, C. C., MOITINHO, M. A., and MELO, I.S. (2020) Phosphorus-solubilizing Trichoderma spp. from Amazon soils improve soybean plant growth. Scientific Reports, 10(1), 2858. https://doi.org/10.1038/s41598-020-59793-8
BORGES CHAGAS, L. F., CHAGAS JUNIOR, A. F., RODRÍGUEZ DE CARVALHO, M., DE OLIVEIRA MILLER, L., and COLONIA, O. (2015) Evaluation of the phosphate solubilization potential of Trichoderma strains (Trichoplus JCO) and effects on rice biomass. Journal of Soil Science and Plant Nutrition, 15(3), 794-804. http://dx.doi.org/10.4067/S0718-95162015005000054
BRAY, R. H., and KURTZ, L. T. (1945) Determination of total, organic and available forms of phosphorus in soil. Soil Science, 59:39-45. http://dx.doi.org/10.1097/00010694-194501000-00006
CÁRDENAS-NAVARRO, R., SÁNCHEZ-YÁNEZ, J., FARÍAS-RODRÍGUEZ, R., and PEÑA-CABRIALES, J. J. (2004) Los aportes de nitrógeno en la agricultura. Revista Chapingo Serie Horticultura, 10(2), 173-178. http://dx.doi.org/10.5154/r.rchsh.2002.07.039
CISNEROS, C. A., and MENJIVAR, J. C. (2016) Influencia de microorganismos solubilizadores de fósforo del suelo y su absorción por plántulas de café. Bioagro, 28(2), 95-106.
ELÍAS, F., MULETA, D., and WOYESSA, D. (2016) Effects of phosphate solubilizing fungi on growth and yield of haricot bean (Phaseolus vulgaris L.) plants. Journal of Agricultural Science, 8(10), 204-218. http://dx.doi.org/10.5539/jas.v8n10p204
ERVIN, D. E., GLENNA, L. L., and JUSSAUME, J. R. A. (2010) Are biotechnology and sustainable agriculture compatible?. Renewable Agriculture and Food Systems, 25(2), 143-157.FAO. (2020) Organización de las Naciones Unidas para la Alimentación y la Agricultura. Estadísticas. Disponible en: <http://www.fao.org/faostat/es/#home> [2 nov 2024]
FIGUEROA-CARES, I. E., CRUZ-ÁLVAREZ, O., MARTÍNEZ-DAMIÁN, M. T., RODRÍGUEZ-PÉREZ, J. E., COLINAS-LEÓN, M. T., and VALLE-GUADARRAMA, S. (2018) Calidad nutricional y capacidad antioxidante en variedades y genotipos nativos de jitomate (Solanum lycopersicum L.). Revista de la Facultad de Agronomía (LUZ), 35(1), 63-84.
GARCÍA-LÓPEZ, A. M., AVILÉS, M., and DELGADO, A. (2015) Plant uptake of phosphorus from sparingly available P-sources as affected by Trichoderma asperellum T34. Agricultural and Food Science, 2015(24), 249-260.
GARCÍA-LÓPEZ, A. M., AVILÉS, M., and DELGADO, A. (2016) Effect of various microorganisms on phosphorus uptake from insoluble Ca-phosphates by cucumber plants. Journal of Plant Nutrition and Soil Science, 179(4), 454–465. https://doi.org/10.1002/jpln.201500024
GÓMEZ-TOVAR, L. G., MARTIN, L., CRUZ, M. A. G., and MUTERSBAUGH, T. (2005) Certified organic agriculture in Mexico: Market connections and certification practices in large and small producers. Journal of Rural Studies, 21(4), 461-474. https://doi.org/10.1016/j.jrurstud.2005.10.002
GONZÁLEZ, M., RÍOS, D., PEÑA ROJAS, K., GARCÍA, E., ACEVEDO, M., CARTES, E., and SÁNCHEZ OLATE, M. (2020) Efecto de la concentración de fósforo y calcio sobre atributos morfo-fisiológicos y potencial de crecimiento radical en plantas de Aextoxicon punctatum producidas a raíz cubierta en la etapa de endurecimiento. Bosque, 41(2), 137-146. http://dx.doi.org/10.4067/S0717-92002020000200137
GYANESHWAR, P., KUMAR, N., PAREKH, L., and POOLE, P. (2002) Role of soil microorganisms in improving P nutrition of plants. Plant and Soil, 245:83-93. https://doi.org/10.1023/A:1020663916259
HEWITT, E. J. (1969) Sand and water culture methods used in the study of plant nutrition. Technical communication. 2nd. ed. England: Commonwealth Agricultural Bureaux. 73 p.
HOSSAIN, Mohammad Enayet; SHAHRUKH, Saif; HOSSAIN, Shahid Akhtar. (2022) Chemical fertilizers and pesticides: impacts on soil degradation, groundwater, and human health in Bangladesh. En: Singh, V.P., Yadav, S., Yadav, K.K., Yadava, R.N. (Eds). Environmental degradation: challenges and strategies for mitigation. Cham: Springer International Publishing, 63-92. https://doi.org/10.1007/978-3-030-95542-7_4
HU, Y. C., SONG, Z. W., LU, W. L., POSCHENRIEDER, C., and SCHMIDHALTER, U. (2012) Current soil nutrient status of intensively managed greenhouses. Pedosphere, 22(6), 825-833. https://doi.org/10.1016/S1002-0160(12)60068-X
KHAN, M. S., ZAIDI, A., AHEMAD, M., OVES, M., and WANI, P. A. (2010) Plant growth promotion by phosphate solubilizing fungi–current perspective. Archives of Agronomy and Soil Science, 56(1), 73-98.
LAGUNES-FORTIZ, E., VILLANUEVA-VERDUZCO, C., LAGUNES-FORTIZ, E. R., ZAMORA-MACORRA, E. J., ÁVILA-ALISTAC, N., and VILLANUEVA-SÁNCHEZ, E. (2021) La densidad de siembra en el crecimiento de la verdolaga. Revista Mexicana de Ciencias Agrícolas, 12(2), 317-329. https://doi.org/10.29312/remexca.v12i2.2848
LIMA-RIVERA, D. L., LÓPEZ-LIMA, D., DESGARENNES, D., VELÁZQUEZ-RODRÍGUEZ, A. S., and CARRIÓN, G. (2016) Phosphate solubilization by fungi with nematicidal potential. Journal of Soil Science and Plant Nutrition, 16(2), 507-524. http://dx.doi.org/10.4067/S0718-95162016005000042
LORES, L. B. M., SORIA, S. R., LIMONTA, G. M., PÉREZ, L. A. P., and MENDOZA, A. C. (2023) Efecto de dosis diferenciadas de NPK sobre tomate (Solanum Licopersicum L.) en suelo pardo sin carbonatos, en condiciones de cultivos protegidos. Agricultura Medio Ambiente y Educación, 56:57-74.
MCKEAN, S. (1993) Manual de análisis de suelos y tejido vegetal: una guía teórica y práctica de metodologías. 1-99 pp.
MUELLER, S. A. F., and WAMSER, A. F. (2009) Combinação da altura de desponte e do espaçamento entre plantas de tomate. Horticultura Brasileira, 27(1), 064-069. https://doi.org/10.1590/S0102-05362009000100013
MURPHY, J., and RILEY, J. P. (1962) A modified single solution method for determination of phosphate in natural waters. Analytica Chimica Acta, 27:31–36. https://doi.org/10.1016/S0003-2670(00)88444-5
PATIL, P. M., KULIGOD, V. B., HEBSUR, N. S., PATIL, C. R., and KULKARNI, G. N. (2012) Effect of phosphate solubilizing fungi and phosphorus levels on growth, yield and nutrient content in maize (Zea mays). Karnataka Journal of Agricultural Sciences, 25(1), 58-62.
PTÁČEK, P. (2016) Phosphate Rocks. IntechOpen. 13 p.
PULGARÍN, J. A. (2007) Densidad de siembra y productividad de los cafetales. Sistemas de producción de café en Colombia. Cenicafé, 6:131-144.
RAIGEMBORN, M. S., KRAUSE, J.M., BELLOSI, E. and MATHEOS, S. D. (2010) Redefinición estratigráfica del grupo Río Chico (Paleógeno Inferior), en el norte de la cuenca del golfo San Jorge, Chubut. Revista de la Asociación Geológica Argentina, 67(2), 239-256.
RAMÍREZ-VARGAS, C., and NIENHUIS, J. (2012) Evaluación del crecimiento y productividad del tomate (Lycopersicon esculentum Mill) bajo cultivo protegido en tres localidades de Costa Rica. Revista Tecnología En Marcha, 25(1), 3-15. https://doi.org/10.18845/tm.v25i1.172
RESTREPO-FRANCO, G., MARULANDA-MORENO, S., DE LA FE-PÉREZ, D. L., DÍAZ-DE LA OSA, A., LUCIA-BALDINI, V., and HERNÁNDEZ-RODRÍGUEZ, A. (2015) Bacterias solubilizadoras de fosfato y sus potencialidades de uso en la promoción del crecimiento de cultivos de importancia económica. Revista CENIC Ciencias Biológicas, 46(1), 63-76.
RODRÍGUEZ ARAUJO, E. A., BOLAÑOS BENAVIDES, M. M., and MENJIVAR FLORES, J. C. (2010) Efecto de la fertilización en la nutrición y rendimiento de ají (Capsicum spp.) en el Valle del Cauca, Colombia. Acta Agronómica, 59(1), 55-64.
ROMERO-FERNÁNDEZ, A. J., ARIAS-MOTA, R. M., and MENDOZA-VILLARREAL, R. (2019) Aislamiento y selección de hongos de suelo solubilizadores de fósforo nativos del estado de Coahuila, México. Acta Botánica Mexicana, 126, 1-16. https://doi.org/10.21829/abm126.2019.1390
SAHANDI, M. S., MEHRAFARIN, A., BADI, H. N., KHALIGHI-SIGAROODI, F., and SHARIFI, M. (2019) Improving growth, phytochemical, and antioxidant characteristics of peppermint by phosphate-solubilizing bacteria along with reducing phosphorus fertilizer use. Industrial Crops and Products, 141, 111777. https://doi.org/10.1016/j.indcrop.2019.111777
SIBI, G. (2011) Role of phosphate solubilizing fungi during phosphocompost production and their effect on the growth of tomato (Lycopersicon esculentum L.) plants. Journal of Applied and Natural Science, 3(2), 287–290. https://doi.org/10.31018/jans.v3i2.199
SINGH, H., and REDDY, M. S. (2011) Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils. European Journal of Soil Biology, 47(1), 30-34. https://doi.org/10.1016/j.ejsobi.2010.10.005
SOUCHIE, E. L., AZCÓN, R., BAREA, J. M., SAGGIN-JÚNIOR, O. J., and DA SILVA, E. (2005) Notas científicas solubilização de fosfatos em meios sólido e líquido por bactérias e fungos do solo. Pesquisa Agropecuária Brasileira, 40(11), 1149-1152.
STEINER, F., LANA, M., and ZOZ, T. (2016). Phosphate solubilizing fungi enhance the growth and phosphorus uptake of sorghum plants. Revista Brasileira de Milho e Sorgo, 15(1), 30-38.
SWEENEY, M. J., and DOBSON, A. D. W. (1998) Mycotoxin production by Aspergillus, Fusarium and Penicillium species. International Journal of Food Microbiology,, 43(3), 141-158.
TAPIA, E., and GARCÍA, F. (2013) La disponibilidad del fósforo es producto de la actividad bacteriana en el suelo en ecosistemas oligotróficos: una revisión crítica. Terra Latinoamericana, 31(3), 231-242.
TORRES, C. P., and DE PRAGER, M. S. (2014) Efecto de la aplicación de roca fosfórica y la inoculación con bacterias solubilizadoras de fosfatos sobre el crecimiento del ají (Capsicum annum). Acta Agronómica, 63(2), 136-144.
TURAN, M., KOCAMAN, A., TÜFENKÇI, S., KATIRCIOĞLU, H., GÜNEŞ, A., KITIR, N., and YILDIRIM, E. (2023) Development of organic phosphorus vermicompost from raw phosphate rock using microorganisms and enzymes and its effect on tomato yield. Scientia Horticulturae, 321:112323.
VÁZQUEZ HUERTA, G. V., DÍAZ, B. B., DÍAZ, J. M. B., ROMERO, W. C., and ARBEU, R. B. (2014) Rentabilidad de la producción de jitomate silvestre orgánico (Solanum lycpersicum L.) en cubiertas plásticas de bajo costo. Revista Mexicana de Agronegocios, 34:773-783.
VELÁZQUEZ, M. S., CABELLO, M. N., ELÍADES, L. A., RUSSO, M. L., ALLEGRUCCI, N. and SCHALAMUK, S. (2017) Combinación de hongos movilizadores y solubilizadores de fósforo con rocas fosfóricas y materiales volcánicos para la promoción del crecimiento de plantas de lechuga (Lactuca sativa L.). Revista Argentina de Microbiología, 49(4), 347-355.
WHITELAW, M. A. (1999) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Advances in Agronomy, 69:99-151.
YANG, L. J., ZHANG, Y. L., LI, F. S. and LEMCOFF, J. H. (2011) Soil phosphorus distribution is affected by irrigation methods in plastic film houses. Pedosphere, 21(6), 712-718.